首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33049篇
  免费   2996篇
  国内免费   2077篇
化学   18028篇
晶体学   163篇
力学   718篇
综合类   722篇
数学   7280篇
物理学   11211篇
  2023年   279篇
  2022年   510篇
  2021年   1332篇
  2020年   818篇
  2019年   941篇
  2018年   655篇
  2017年   804篇
  2016年   952篇
  2015年   1033篇
  2014年   1394篇
  2013年   2171篇
  2012年   1524篇
  2011年   1733篇
  2010年   1582篇
  2009年   1966篇
  2008年   2080篇
  2007年   2264篇
  2006年   1659篇
  2005年   1109篇
  2004年   986篇
  2003年   1015篇
  2002年   975篇
  2001年   963篇
  2000年   661篇
  1999年   542篇
  1998年   534篇
  1997年   393篇
  1996年   458篇
  1995年   427篇
  1994年   421篇
  1993年   455篇
  1992年   450篇
  1991年   295篇
  1990年   246篇
  1989年   203篇
  1988年   235篇
  1987年   198篇
  1986年   209篇
  1985年   314篇
  1984年   231篇
  1983年   142篇
  1982年   290篇
  1981年   470篇
  1980年   425篇
  1979年   465篇
  1978年   369篇
  1977年   281篇
  1976年   240篇
  1974年   76篇
  1973年   149篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Si nanoparticles (NPs), which are innovative promising light-harvesting components of thin-film solar cells and key-enabling biocompatible theranostic elements of infrared-laser and radiofrequency hyperthermia-based therapies of cancer cells in tumors and metastases, are significantly advanced in their near/mid-infrared band-to-band and free-carrier absorption via donor sulfur-hyperdoping during high-throughput facile femtosecond-laser ablative production in liquid carbon disulfide. High-resolution transmission electron microscopy and Raman microscopy reveal their mixed nanocrystalline/amorphous structure, enabling the extraordinary sulfur content of a few atomic percents and very minor surface oxidation/carbonization characterized by energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. A 200-nm thick layer of the nanoparticles exhibits near−mid-infrared absorbance, comparable to that of the initial 380-micron thick n-doped Si wafer (phosphor-dopant concentration ≈1015 cm−3), with the corresponding extinction coefficient for the hyperdoped NPs being 4–7 orders higher over the broadband spectral range of 1–25 micrometers. Such ultimate, but potentially tunable mid-IR structured, multi-band absorption of various sulfur-impurity clusters and smooth free-carrier absorption are break through advances in mid-infrared (mid-IR) laser and radiofrequency (RF) hyperthermia-based therapies, as envisioned in the RF-heating tests, and in fabrication of higher-efficiency thin-film and bulk photovoltaic devices with ultra-broad (UV−mid-IR) spectral response.  相似文献   
32.
The synthesis and characterizations for a series of dinuclear gold (I)-di-NHC complexes, 1–8 through the trans-metalation method of their respective silver (I)-di-NHC complexes, i–viii are reported (where NHC = N-heterocyclic carbene). The successful complexation of a series of unusual non-symmetrical and symmetrical di-NHC ligands, 3,3'-(ethane-1,2-diyl)-1-alkylbenzimidazolium-1'-butylbenzimidazolium (with alkyl = methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, benzyl) with the gold (I) ions are suggested by elemental analysis, Fourier transform-infrared, 1H- and 13C-NMR data. The 13C-NMR spectra of 1–8 show a singlet sharp peak in the range of 190.00–192.00 ppm, indicating the presence of a carbene carbon that bonded to the gold (I) ion. From single crystal X-ray diffraction data, the structure of complex 6 with the formula of [di-NHC-Au (I)]2·2PF6 is obtained [where NHC = 3,3'-(ethane-1,2-diyl)-1-hexylbenzimidazolium-1'-butylbenzimidazolium]. The photophysical study in solid state of 6 displays an intense photoluminescence with a strong emission maxima, λem = 480 nm, upon excitation at 340 nm at room temperature. Interestingly, the emission maximum at 77 K shows a structural character with a strong peak at 410 nm, a medium at 433 nm and a weak at 387 nm, accompanied by a tail band to about 500 nm.  相似文献   
33.
A zinc coordination polymer derived from pyridine-2,6-dicarboxylate (PDC), {[Zn2(PDC)2]}n, was successfully prepared via conventional, sonication and microwave-irradiation methods. The composition and characteristics of the obtained coordination polymers (CPs) were investigated by elemental analysis, TGA/DTA, X-ray diffraction and spectroscopic techniques. The so obtained CPs were heat-treated in the air at 600 °C for 2 h to produce ZnO of nanosized particles (NPs). It is of interest to note that the synthesis approach of the precursor greatly affects both the nanoparticle size and the structure of the resulting ZnO NPs. Moreover, the smallest particle size was associated with the sample derived from the ultrasonically prepared precursor. TEM analysis revealed that all samples have sphere-like morphologies. Structural analysis of the prepared ZnO samples was conducted and compared using Rietveld analysis of their PXRD patterns. Optical band gap calculations based on analysis of the UV–vis spectra of ZnO samples using Tauc's power law were achieved. The highest band gap of 3.63 eV was observed for ZnO sample obtained from the ultrasonically prepared precursor. Furthermore, the photocatalytic activity of ZnO NPs for the removal of Eosin Y color was monitored. The highest removal efficiency was recorded for ZnO originated from the ultrasonically synthesized precursor. Enhancement of removal efficiency that reached 98% was attained in only a period of 8 min. Its recycling test showed that it can be reused without structural changes over four cycling experiments.  相似文献   
34.
Guided by the self-penetrating features can improve the stability of metal organic frameworks (MOFs), an unprecedented 3D self-penetrated framework, {[Zn (tptc)0.5(bimb)]·H2O}n ( NUC-6 , here NUC corresponding to North University of China), with 3D (4,4)-c {86} net, was designed. Benefit from the high chemical stability and excellent luminescent property, NUC-6 can be act as an efficient multi-response chemo-sensor in detecting dichloronitroaniline pesticide and nitrofuran antibiotics in water with the detection limits are 116 ppb for DCN pesticide, 16 ppb for NFT antibiotic, and 12 ppb for NTZ antibiotic. Besides, the mechanisms of luminescence quenching were revealed from the viewpoint of internal filter effect (IFE) and photo-induced electron transfer (PET), implied by the optical spectroscopy and quantum chemical calculation. This work provides a promising strategy to design stable MOFs by improving the self-penetrating features and to expand their practical applications in the detection of organic pollutants in aqueous medium.  相似文献   
35.
A range of conventional, i.e. maceration, percolation, ultrasonic assisted, Soxhlet and Soxtec extraction (STE), to advanced extraction techniques of accelerated solvent extraction (ASE) was utilized for the first time in order to optimize the extract yield and recovery of phenolics—gallic acid (GA), rutin (RT) and quercetin (QT)—quantified via ultra-high performance liquid chromatography with diode array detector (UHPLC–DAD). The effect of solvents (n-hexane, dichloromethane and methanol) and temperature (60, 80 and 100°C) upon extraction yield, phenolic content and antioxidant activity (DPPH, ABTS and DPPH) was studied, and the method was validated in commercial food samples from Saudi Arabia, China and India. A high extract yield with percentage recovery was observed for STE (1221.10 mg/5 g; 24.42%) and ASE techniques (91.50 mg/1 g; 9.15%) in methanol at 100°C. UHPLC–DAD showed retention times (min) of 0.67, 1.93 and 1.90 for GA, RT and QT, respectively in the shortest runtime of 3 min. The yield for phenolics was higher for STE/ASE (ppm): 15.27/15.29 (GA), 85.24/37.56 (RT) and 52.20/33.40 (QT), respectively. In terms of antioxidant activities, low IC50 values (μg/ml) of 1.09/1.18 (DPPH), 2.11/5.32 (ABTS) and 4.35/7.88 (phenazine methosulfate–nicotinamide adenine dinucleotide) were observed for STE and ASE, respectively. Multivariate analysis for STE showed a significant (P = 0.000) correlation for extraction type vs. extract yield and phenolics content; however, there was no significance for antioxidant activities vs. extraction type. ASE showed a positive correlation for solvent vs. extraction yield, phenolics and antioxidant activity; however, there was no correlation for extraction yield and DPPH activity. Principal component analysis for STE showed a major variability (52.02%) for extraction yield and phenolics in PC1 followed by PC2 (38.30%) for antioxidant activities. For ASE, PC1 (48.68%) showed a positive correlation for solvent vs. extraction yield and phenolics while PC2 (33.12%) showed a positive correlation for temperature and antioxidant activities. STE and ASE were the optimized extraction techniques for the garlic food sample while a significant effect of solvent and temperature was observed upon extraction yield, phenolics and antioxidant activity.  相似文献   
36.
We theoretically study complementarity between micro-micro and micro-macro entanglement in a Bose–Einstein condensate with two Rydberg impurities. We investigate quantum dynamics of micro-micro and micro-macro entanglement in the micro-macro system. It is found that strong micro-macro entanglement between Rydberg impurities and the BEC can be generated by the use of initial micro-micro entanglement between two Rydberg impurities, which acts as the seed entanglement to create micro-macro entanglement. We demonstrate a curious complementarity relation between micro-micro and micro-macro entanglement, and find that the complementarity property can be sustained to some extent even though in the presence of the BEC decoherence.  相似文献   
37.
In this paper, four optical filter topologies based on metal–insulator–metal waveguides are proposed and the designed structures are investigated numerically using finite-difference timedomain method. Triangular-shaped adjunctions have been added to the filter structures to improve their transmission spectrum. These improved structures consist of air as the insulator and silver as the metal. The relative permittivity of metal has been described via the Drude,Drude–Lorentz, and Palik models. The first filter's transmission spectrum shows an acceptable transmittance. In the second optimized filter, the transmission spectrum has been improved. The transmittance spectrum can be tuned through adjusting the edge of the triangle in these four optimized filters. As a result, the bandwidths of resonance spectra can be adjusted. The theory of such tapered structures will be investigated by the tapered transmission line and will be solved with the transfer matrix method. This method shows a better performance and higher transmission efficiency in comparison with the basic structures. On the other hand, the final filter has been chosen as the best one because of its hexagonal resonator. The main reason for having a better result is due to a longer interaction length in comparison with the circular resonator. This in turn creates much better energy coupling and results in higher transmission.  相似文献   
38.
本文利用红外光解离光谱研究了第三族金属氧化物离子对二氧化碳分子的转化机制. 研究表明,对于[ScO(CO2)n]+体系,在n≤4时,形成了溶剂化结构;在n=5时,形成了碳酸盐结构,实现了二氧化碳的转化. 对于[YO(CO2)n]+体系,需要4个二氧化碳分子就可以实现二氧化碳的转化. 而在[YO(CO2)n]+体系中,只发现了溶剂化结构,没有观察到碳酸盐结构. 理论计算表明,[YO(CO2)n]+体系拥有最小的溶剂化结构向碳酸盐结构转化能垒,[LaO(CO2)n]+体系拥有最大的溶剂化结构向碳酸盐结构转化能垒. 本文从分子水平揭示了不同金属氧化物离子对二氧化碳分子转化的影响规律.  相似文献   
39.
One of the most important multipartite entangled states, Greenberger–Horne–Zeilinger state (GHZ), serves as a fundamental resource for quantum foundation test, quantum communication and quantum computation. To increase the number of entangled particles, significant experimental efforts should been invested due to the complexity of optical setup and the difficulty in maintaining the coherence condition for high-fidelity GHZ state. Here, we propose an ultra-integrated scalable on-chip GHZ state generation scheme based on frequency combs. By designing several microrings pumped by different lasers, multiple partially overlapped quantum frequency combs are generated to supply as the basis for on-chip polarization-encoded GHZ state with each qubit occupying a certain spectral mode. Both even and odd numbers of GHZ states can be engineered with constant small number of integrated components and easily scaled up on the same chip by only adjusting one of the pump wavelengths. In addition, we give the on-chip design of projection measurement for characterizing GHZ states and show the reconfigurability of the state. Our proposal is rather simple and feasible within the existing fabrication technologies and we believe it will boost the development of multiphoton technologies.  相似文献   
40.
A symmetrical 2‐thiopyrimidine based molecule with an expanded π‐electron system is synthesized and used to form a self‐assembled monolayer (SAM) on gold surfaces. Utilizing chemical vapor deposition a monolayer of (3‐mercaptopropyl)triethoxysilane is formed on silicon dioxide substrates. Both of these SAM coated substrates are characterized by X‐ray photoelectron spectroscopy and the growth of a coordination polymer built up from 5,5′‐(ethyne‐1,2‐diyl)bis(2‐hydroxyacetophenone) and copper(II) on dual SAM coated transducers is studied. After the deposition procedure on interdigital electrodes the electrical properties of the polymer are investigated performing resistive measurements. A significant change of the resistance, which depends on the surrounding atmosphere, proves the sensing behavior of the synthesized coordination polymer. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 335–344  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号